ENERGIA E DESENVOLVIMENTO SUSTENTÁVEL*

ENERGY AND SUSTAINABLE DEVELOPMENT

Raquel da Silva Pereira

Professora do PPGA da USCS – Universidade Municipal de São Caetano do Sul

A série "Sustentabilidade", coordenada pelo Prof. José Goldemberg, é composta por dez volumes que trazem um interessante apanhado histórico a partir da definição de desenvolvimento sustentável constante no Relatório Brundtland, procurando analisar possíveis avanços desde então, sobretudo no cenário nacional.

O autor iniciou o elucidativo texto do volume 4 (*Energia e desenvolvimento sustentável*), definindo energia como sendo a capacidade de produzir transformações num sistema (mecânicas, físicas, químicas ou biológicas).

A energia pode se manifestar de diversas formas: energia de radiação; energia química; energia nuclear; energia térmica; energia mecânica; energia elétrica; energia magnética e energia elástica. A mais importante propriedade dessas formas de energia é que podem ser convertidas umas nas outras, com a possibilidade de, inclusive, serem armazenadas, o que deu origem ao "princípio de conservação de energia".

São fontes inesgotáveis de energia: a energia solar; a energia geotérmica e a energia das marés.

O autor esclareceu sobre a demanda mundial de energia primária, mostrada a Tabela 1, onde se pode ver que o petróleo continua sendo a principal fonte de energia demandada, seguido do carvão e do gás natural. Somadas, essas três fontes apresentam um total de 81,05% da demanda mundial de energia primária.

* Goldemberg, José. Energia e desenvolvimento sustentável. São Paulo: Blucher, 010. Série Sustentabilidade Vol. 4). A referida série é coordenada pelo mesmo autor.

Tabela 1: Demanda mundial de energia primária (2008)

Recebido em: 27/04/2011

Aprovado em: 03/05/2011

Fonte	%
Petróleo	33,34
Carvão	27,29
Gás natural	20,42
Nuclear	6,03
Biomassa tradicional	7,9
Biomassa moderna	1,83
Geotérmica	0,64
Vento	0,16
Solar	0,11
Marés	0,00
PCH	0,24
Grandes hidrelétricas	2,06

Das fontes elencadas na Tabela 1, são energias novas renováveis a biomassa moderna, a geotérmica, a do vento, a solar; a das marés, a PCH e a das grandes hidrelétricas, somadas às novas renováveis, são renováveis modernas.

Goldemberg ressaltou que a transformação da energia primária gera a energia secundária:

- a) eletricidade (hidrelétricas, termelétricas, usinas eólicas, painéis fotovoltaicos);
- b) derivados de petróleo (óleo diesel, óleo combustível, gasolina, querosene, gás liquefeito de petróleo):

Fonte: elaborada a partir de Goldemberg (2010).

Endereço da autora:

Raquel da Silva Pereira

E-mail: raquelspereira@uol.com.br

- c) biomassa "moderna" (biogás de aterros e biocombustíveis);
- d) calor (combustão em caldeiras).

No capítulo 5, são apresentados os problemas do atual sistema energético, sendo o primeiro deles a exaustão das reservas. As reservas de petróleo, gás natural e carvão devem se esgotar dentro de 41, 64 e 241 anos, respectivamente.

Por ser extremamente versátil e facilmente transportável e estocável, o petróleo é atualmente o energético mais importante e estratégico do planeta.

Outro problema apresentado refere-se à segurança de abastecimento. Como a segurança no fornecimento de energia é um aspecto vital na geopolítica dos países, as reservas internas determinam fortemente suas posições em negociações internacionais, tanto comerciais quanto ambientais. Posteriormente, foram explicitados os impactos ambientais, tais como a poluição local, a poluição regional e a poluição global.

As externalidades lançadas ao ar causam desde doenças respiratórias provocadas pelo uso da lenha até o aquecimento global e a perda de biodiversidade, passando pelos riscos e desastres ambientais.

Cada pessoa consome, em média, oito toneladas de recursos minerais por ano. Como o planeta conta com cerca de 6 bilhões de pessoas, a conta de consumo anual de recursos minerais por ano totaliza 48 bilhões de toneladas. Podem ser citadas como sendo as principais causas: aumento populacional; indústria; transportes; agricultura; turismo e mudança nos padrões de consumo.

Em relação à poluição local, cita-se que, em 1943, houve o *smog*, em Los Angeles, seguido em 1952 pelo *fog* londrino, que ocasionou quatro mil mortes e mais de 20 mil casos de doenças em semanas, fazendo com que fosse lançada a Lei do Ar Puro, em 1956, e o *Clean Air Act*, em 1963, nos EUA.

Para exemplificar a poluição regional, o autor em referência mencionou a chuva ácida, que contamina lagos e corrói edifícios e monumentos.

Sobre a poluição global, o IPCC¹ deu início, em 1990, a publicações a cada três ou quatro anos sobre as mudanças climáticas. O quarto relatório do IPCC, de 2006, afirmou que:

- a) entre 1906 e 2005, a temperatura média da Terra aumentou 0,74°C;
- b) geleiras, neve de montanhas e calotas polares declinaram em 15% desde 1900, causando o aumento do nível do mar:
- c) os oceanos absorvem 80% do calor incidente do Sol sobre a Terra, expandindo o volume e aumentando o nível do mar;

Quadro 1: Impactos ambientais, segundo o combustível utilizado

Problema	Principal causa				
Local	Poluição urbana do ar	Uso dos combustíveis fósseis para transporte.			
	Poluição do ar em ambientes fechados	Uso de combustíveis sólidos (biomassa e carvão) para aquecimento e cocção.			
Regional	Chuva ácida	Emissões de enxofre e nitrogênio, matéria particulada e ozônio na queima de combustíveis fósseis, principalmente no transporte.			
Global	Efeito estufa	Emissões de CO ₂ na queima de combustíveis fósseis.			
	Desmatamento	Produção de lenha e carvão vegetal e expansão da fronteira agrícola.			
	Degradação costeira e marinha	Transporte de combustíveis fósseis.			

Fonte: Goldemberg (2010: 38).

Tabela 2: Reservas mundiais provadas de petróleo em bilhões de barris (2004)

Arábia Saudita	Outros	Canadá	Irã	Iraque	Kuwait	Emirados Árabes Unidos	Venezuela	Rússia	EUA
262,20	238,18	179,14	126,10	115,90	102,80	96,80	77,60	60,50	21,20

Fonte: elaborada a partir de Goldemberg (2010).

¹ Intergovernmental Panel on Climate Change (em português, Painel Intergovernamental de Mudanças Climáticas).

- d) chuvas aumentaram no oeste das Américas, norte da Europa, norte e centro da Ásia. Secas aumentaram no Mediterrâneo, sul da África e parte do sul da Ásia. O aumento de eventos de forte precipitação é consistente com o aquecimento global e com a maior concentração atmosférica de vapor d'água;
- e) secas mais intensas e mais longas são mais frequentes desde 1970;
- f) entre 1990 e 2099, a temperatura média do planeta deve aumentar entre 0,°C e 6,4°C; o nível do mar deve aumentar entre 0,18m e 0,59m; o pH dos oceanos se reduzirá entre 0,14 e 0,35;
- g) as emissões passadas e futuras de CO₂ por atividades antrópicas continuarão a contribuir para o aquecimento global e o aumento no nível dos oceanos por mais de um milênio, em virtude da escala de tempo para remover esses gases da atmosfera.

Para Goldemberg, o caminho para um desenvolvimento sustentável passa por uma utilização mais eficiente da energia nos transportes, nos processos produtivos e nas construções, somada ao aumento da utilização de energias renováveis, novas tecnologias e, ainda, à utilização de energia nuclear, desde que, no caso desta última, seja resolvida a questão da disposição final dos resíduos radioativos.

Sendo a energia essencial para as atividades humanas, embora parte da humanidade ainda não tenha acesso a ela, a prospecção é de que a demanda por energia aumente, de modo que será necessário o desenvolvimento de novas soluções técnicas para viabilizar a utilização das fontes disponíveis. Só assim poderão ser mitigados os problemas ambientais decorrentes do seu uso, o que passa também por uma reeducação de consumo.